
Глава 7
Программирование в Linux без визуального контроля

7.1. Алгоритмизация процессов

7.1.1. Определение алгоритма
Давать определение алгоритма можно по-разному. Самым распространённым является следующее:
Алгоритм - это строго детерминированная (определённая) последовательность действий, описывающая процесс преобразования объекта из начального состояния в конечное, записанная с помощью понятных исполнителю команд.
Алгоритмы могут описывать процессы преобразования самых разных объектов. Широкое распространение получили вычислительные алгоритмы, по которым осуществляют преобразования числовых данных. Примерами таких алгоритмов могут служить алгоритмы выполнения арифметических действий. Например, алгоритм сложения целых чисел, алгоритм умножения дробей с разными знаменателями и т.д.
Слово «алгоритм» происходит от algorithmi — латинской формы написания имени выдающегося математика IX века аль-Хорезми, который сформулировал правила выполнения арифметических операций.
Можно дать и другое определение алгоритма:
Алгоритм – это точное предписание, однозначно определяющее вычислительный процесс, ведущий от начальных (входных) данных к результату (выходным данным).
Как видно из определений, для выполнения алгоритма нужен исполнитель. Исполнитель понимает команды алгоритма и выполняет их. При составлении алгоритма надо следить за тем, чтобы все его команды были понятны исполнителю.
Например, если вы складываете два числа в столбик, значит вы являетесь исполнителем алгоритма сложения. Если числа складывает калькулятор, то исполнитель он. Очевидно, что для человека и калькулятора алгоритмы должны быть разными.
Универсальным исполнителем является компьютер. Алгоритм для компьютера означает точное описание некоторого процесса, инструкцию по его выполнению. Алгоритмизация – это техника разработки (составления) алгоритма для решения задач на ЭВМ.
Чтобы создать какую-либо компьютерную программу для решения определённой задачи, предварительно необходимо разработать алгоритм её решения, а затем уже по нему писать программу.
Представление алгоритма с помощью особых, понятных компьютеру, команд позволяет поручить ему выполнение такого алгоритма. В этом случае компьютер будет работать автоматически, без участия человека. Говорят, что компьютер исполняет программу, реализующую алгоритм.
Алгоритм, записанный на понятном компьютеру языке, называется программой, а такой язык - языком программирования.
Таким образом, программа – это последовательность команд, понятных исполнителю «компьютер».

7.1.2. Алгоритмические конструкции
Существуют алгоритмы, в которых команды должны быть выполнены последовательно одна за другой. Такие алгоритмы называются линейными. Например, алгоритм сложения дробей с разными знаменателями линейный.
Линейный алгоритм– это такой алгоритм, в котором все действия выполняются последовательно друг за другом и только один раз.
На практике часто встречаются задачи, в которых в зависимости от некоторого условия необходимо выполнить вычисления по одним или другим формулам. Такие задачи решаются с помощью разветвляющихся алгоритмов. Примером алгоритма с ветвлением может служить алгоритм решения квадратного уравнения.
В таких алгоритмах выбор направления продолжения вычисления осуществляется по итогам проверки некоторого условия. Структуры ветвления в языках программирования задаются оператором IF.
Для решения многих задач характерно многократное повторение отдельных участков вычислений. Для решения таких задач применяются циклические алгоритмы.
Цикл – это последовательность команд, которая повторяется до тех пор, пока не будет выполнено заданное условие.
Циклическое описание многократно повторяемых процессов значительно снижает трудоёмкость написания программ.
Например, Алгоритм перевода десятичного числа в двоичное циклический.
Таким образом, при разработке алгоритмов используют три основные алгоритмические конструкции:
· Линейная;
· Ветвление;
· Циклическая.

7.1.3. Свойства алгоритма
Все алгоритмы подчиняются некоторым общим законам. Подробное изучение этих законов представляет достаточно сложную задачу и выходит за рамки этой книги. Здесь будут обсуждаться только те элементы теории алгоритмов, которые соответствуют школьной программе.
Команды алгоритма должны быть понятны для исполнителя так, чтобы исполнитель был способен однозначно выполнить каждую из них без дополнительной информации. Иными словами, имея алгоритм и произвольный вариант допустимых исходных данных, исполнитель должен знать, как надо действовать для выполнения этого алгоритма. Это свойство называется понятностью.
Алгоритмы состоят из отдельных команд, которые исполнитель выполняет одну за другой в определённой последовательности. Разделение информационного процесса в алгоритме на отдельные команды является важным свойством алгоритма и называется дискретностью.
Запись алгоритма должна быть такова, чтобы, выполнив очередную команду, исполнитель точно знал, какую команду необходимо исполнять следующей. Это свойство алгоритма называется детерминированностью.
Алгоритм должен обеспечивать преобразование объекта из начального состояния в конечное за конечное число шагов. Такое свойство алгоритма называется результативностью или конечностью.
Алгоритм решения задачи разрабатывается в общем виде, т.е. он должен быть применим для некоторого класса задач, различающихся лишь исходными данными. Это свойство называется массовостью. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма. Например, алгоритм деления дробей позволяет вычислить результат для любых дробей, при условии, что делитель неравен нулю.
Таким образом, основные свойства алгоритмов следующие:
1. Понятность;
2. Дискретность (прерывность, раздельность);
3. Детерминированность (Определённость);
4. Результативность (или конечность);
5. Массовость.

7.2. Формы представления алгоритмов

Для записи алгоритма существуют общепринятые правила:
· Каждый алгоритм должен иметь имя, которое раскрывает его смысл;
· Должны быть обозначены начало и конец алгоритма;
· Должны быть описаны входные и выходные данные;
· Команды алгоритма, выполняющие преобразование входных данных к выходным должны быть пронумерованы и записаны с помощью соответствующих изобразительных средств.
Учитывая указанные правила, общий вид алгоритма можно представить следующим образом:
название алгоритма;
описание данных;
начало;
команды алгоритма (тело алгоритма);
конец.
Соблюдая данные правила алгоритм можно записать многими способами. Мы рассмотрим три наиболее распространённых и удобных из них:
· Словесно- формульный;
· Графический (блок-схема);
· Языки программирования.
Словесно-формульный способ записи алгоритма представляет собой описание последовательных этапов обработки данных. Алгоритм задаётся в произвольном изложении на естественном языке. Описание осуществляется с помощью обычных слов русского (или другого) языка и математических формул.
В такой форме обычно представляют алгоритм решения квадратного уравнения и многие другие алгоритмы школьного курса математики.
Для графического описания алгоритма используются блочные символы (блоки), которые соединяются между собой линиями связи со стрелками. Каждый этап вычислительного процесса представляется геометрическими фигурами (блоками). Они делятся на арифметические или вычислительные (прямоугольник), логические (ромб) и блоки ввода-вывода данных (параллелограмм). Порядок выполнения этапов указывается стрелками, соединяющими блоки. Геометрические фигуры размещаются сверху вниз и слева на право.
Распространённость блок-схем обусловлена их визуальной наглядностью. При тактильном изучении блок-схем требуется достаточно много времени на осознание алгоритма и понимание принципа его работы. Самостоятельно изготовить рельефную блок-схему очень сложно.
При записи алгоритма в словесно-формульной форме или в виде блок-схемы допускается определённый произвол при изображении команд. Вместе с тем такая запись точна настолько, что позволяет человеку понять суть алгоритма и исполнить его. Однако на практике в качестве исполнителей вычислительных алгоритмов используются компьютеры, а для компьютера подобная запись алгоритма не подходит.
Алгоритм, предназначенный для исполнения на компьютере, должен быть записан на понятном ему языке. Здесь на первый план выдвигается необходимость точной записи команд, не оставляющей места для произвольного толкования их исполнителем. Язык для записи вычислительных алгоритмов для компьютера должен быть строго формализован. Такой язык принято называть языком программирования, а запись алгоритма на этом языке — программой для компьютера.

7.3. Использование Python в Linux без визуального контроля

Программа на языке Python представляет собой обычный текстовый файл, содержащий инструкции Python. Часто этому файлу дают расширение «.py», чтобы было понятно, что это программа на языке Python.
Работать с таким текстовым файлом можно в обычном текстовом редакторе, например Pluma. Для написания текста программы можно пользоваться следующим алгоритмом:
1. Откройте список программ командой Alt +F1.
2. Перемещаясь стрелкой вниз найдите подменю «Стандартные» и раскройте его стрелкой вправо.
3. Перемещая фокус вниз курсорной стрелкой найдите редактор «Pluma» и запустите его нажав клавишу Return. Откроется окно текстового редактора Pluma.
4. В окне редактора напишите строку

print(“Привет, мир!”)

Для вывода на экран фразы «Привет, мир!».
5. Введите команду Ctrl +Shift +S для сохранения файла с текстом этой простейшей программы. В открывшемся диалоговом окне «Сохранить как» курсор будет находится в поле редактирования, в котором следует ввести имя файла.
6. Введите имя программы, например, «prog1.py» и нажмите Return (Enter).
 Итак, мы написали программу, которая с помощью функции print() выводит на экран фразу «Привет, мир!».
Запускать программу на выполнение и изучать результаты её работы мы будем в окне терминала. Для запуска написанной программы можно поступать следующим образом:
1. Откройте терминал командой Ctrl +Alt +T.
2. В командной строке введите команду
[bookmark: _GoBack]
Python3 prog1.py

И нажмите Return для её запуска.
3. Для изучения результатов работы программы воспользуйтесь клавишами цифрового блока. Экранный помощник Orca с помощью синтезатора речи и брайлевского дисплея отобразит фразу «Привет, мир!».
Если программа содержала ошибки, то информацию о них также можно изучить в окне терминала с помощью клавиш цифрового блока.
Удобно при разработке программы не закрывать каждый раз текстовый редактор и терминал, а переключаться между ними командой Alt +Tab. Если в терминале вы увидели сообщение об ошибке в программе, переключитесь в редактор и исправьте ошибку. После чего сохраните файл с исправленным текстом программы командой Ctrl +S и переключившись в терминал ещё раз запустите программу.
Напомним, что завершив работу закрыть терминал можно командой Ctrl +D, а редактор Pluma стандартной командой Alt +F4.

7.4. Программирование линейных алгоритмов на языке Python

7.4.1. Ввод и вывод данных. Переменные
Как вы уже знаете, для вывода информации на экран компьютера в Python используется функция print(). Внутри круглых скобок через запятую записываются элементы для вывода. Пример программы с использованием этой функции был приведён в предыдущем пункте.
Для ввода данных в программу используется функция input(). Она считывает одну строку, т.е. набранный на клавиатуре пользователем текст вводится в программу после нажатия клавиши Enter. Эта строка попадает в переменную, имя которой указано слева от знака присваивания перед функцией input().
Пример 1. Программа запрашивает имя пользователя, считывает введённое имя и приветствует пользователя.

print(“Как вас зовут?”)
name =input()
print(“Здравствуйте, “, name, “!”)

Напомним, что результаты работы программы отображаются в окне терминала.
Информация, вводимая пользователем, хранится в переменных в виде их значений. Для того, чтобы поместить значение в переменную используют оператор присваивания = (равно). Слева от оператора присваивания в программах ставится имя переменной, например, name (как в примере 1). Справа от оператора присваивания может быть функция input() или выражение, вычисляющее присваиваемое значение. В частности, допустимо помещать в одну переменную содержимое другой, например, x =y.
Обратите внимание, что оператор присваивания не является равенством, к которому вы привыкли в курсе математики. Например, выражение X =x +2 с точки зрения математики представляет собой не имеющее корней уравнение, а в Python означает вполне допустимое присваивание. Для выполнения такого присваивания Python возьмёт значение, лежащее в переменной x, прибавит к нему число 2 и положит в ту же переменную x. Исходное значение бывшее в x при этом исчезнет. Заметим, что в этом примере переменная x должна быть числовым объектом, иначе к её значению нельзя будет прибавить число 2.
Формально говоря, в Python нет и переменных. Есть лишь имена, которые связаны с некоторыми объектами. В Python все данные называются объектами. Число 2 представляется объектом типа int, строка “Привет” – это объект типа str. Каждый объект относится к какому-то типу. Строки хранятся в объектах типа str, целые числа хранятся в объектах типа int, действительные числа — в объектах типа float. Тип объекта определяет, какие операции можно выполнять с объектами этого типа. Например, объекты типа int можно перемножать, складывать и, вообще, выполнять любые арифметические действия. Объекты типа str перемножать нельзя, а результат их сложения будет выглядеть иначе, чем результат сложения чисел.
Пример 2. Программа сложения двух значений, вводимых с клавиатуры.

Print(“Введите два значения”)
a =input()
b =input()
c =a +b
print(“Результат ”, c)

Если после запуска программы пользователь в терминале введёт в качестве первого значения число 2, а в качестве второго – число 3, то программа выведет «Результат 23».
Это произошло потому, что Python по умолчанию воспринял вводимые значения как объекты типа str. Сложение двух строк Python осуществляет приписыванием к левому слагаемому правого. Говорят, что для двух строк определена операция конкатенации (сложения). В отличии от сложения чисел, результат сложения строк зависит от порядка следования слагаемых.
Для того, чтобы сложение было выполнено именно над числами, строки a и b следует преобразовать к числовому типу, например, Int.
Объект другого типа в Python можно преобразовать в строку, которая соответствует этому объекту. Для этого следует использовать функцию str(), передав ей в качестве аргумента объект, преобразуемый в строку.
Строка состоит из последовательности символов. Узнать количество символов (длину строки) можно при помощи функции len().
Пример 3. Программа выводит количество символов в вашем имени и количество цифр в числе, равном 2 в степени 1000.

print("Как вас зовут?")
name =input()
l =len(name)
s =str(2**1000)
print("В вашем имени " +str(l) +" букв")
print(len(s))

Поясним, как работает эта программа:
1. В первой строке программа выводит на экран фразу «Как вас зовут?».
2. Во второй строке программа с помощью функции input() позволяет пользователю ввести с клавиатуры своё имя и с помощью оператора присваивания помещает введённое имя в переменную name.
3. В третьей строке функция len() вычисляет длину строки name (т.е. вашего имени) и используя оператор присваивания помещает вычисленное значение в переменную l числового типа.
4. Здесь функция str() преобразует числовое выражение 2**1000 в строку s. Это необходимо для того, чтобы далее вычислить длину этой строки (это и есть количество цифр в числе).
5. В пятой строке функция print() выводит на экран строку с информацией о количестве букв в введённом имени. Причём выводимая строка формируется с помощью операции конкатенации трёх составляющих её строк: "В вашем имени ", str(l) и " букв". Обратите внимание, что в первой строке перед закрывающей кавычкой поставлен символ пробела, а в последней строке символ пробела поставлен после открывающей кавычки. Это сделано для того, чтобы при выводе на экран перед и после цифры, означающей количество символов, были пробелы и цифра не сливалась с текстом. Сама цифра перед выводом на экран преобразуется из числового типа в строковый с помощью функции str().
6. В последней строке программы функция print() выводит на экран только количество цифр в вычисленном ранее и превращённом в строку числе. Обратите внимание, что здесь в качестве аргумента функции print() используется функция возвращающая число, а не строку.
Напомним, что если у функции print() несколько аргументов, то они отделяются друг от друга запятой. Подобное использование нескольких аргументов не является их конкатенацией.
Символ # (решётка) означает комментарий. Комментарий – это текст, следующий за символом #. Комментарии могут занимать отдельную строку или добавляться в строку с программным кодом, правее его. Текст, следующий за символом #, интерпретатором игнорируется, как комментарий, добавленный для человека. В качестве комментария в текст программы добавляются пояснения для программиста, помогающие ему понять смысл программы.

7.4.2. Арифметические операции
В языке Python существует несколько числовых типов:
· целые числа (числа без дробной части);
· Действительные числа (числа с десятичной точкой);
· комплексные числа (числа с действительной и мнимой частью);
· Рациональные числа (числа, представляемые парой целых чисел – числитель и знаменатель).
Здесь мы рассмотрим два наиболее часто используемых типа: целые числа int и действительные числа float. Эти типы являются базовыми и не требуют подключения дополнительных библиотек.
Целые числа типа int в Python поддерживают набор обычных арифметических операций:
+ (плюс) – сложение;
- (минус) – вычитание;
* (звёздочка) – умножение;
** (звёздочка звёздочка) – возведение в степень;
// (косая черта косая черта) –целая часть от деления;
% (процент) – остаток от деления.
Все перечисленные арифметические операции применяются к целым числам и возвращают целые значения.
Как правило, в программах арифметические действия осуществляются не над конкретными числами, а над переменными, имеющими числовые значения. Как уже говорилось, в Python с формальной точки зрения переменных нет – все они являются объектами. Однако, слово «переменная» прочно вошло в программирование и стало общеупотребительным, поэтому мы будем использовать именно его.
Пример 4. Программа запрашивает два целых числа и выводит результаты выполнения всех возможных арифметических действий с ними.

print("Введите два целых числа")
x =int(input())
y =int(input())
z =x +y
print("Сумма равна ", z)
z =x -y
print("Разность равна ", z)
z =x*y
print("Произведение равно ", z)
z =x**y
print("Степень равна ", z)
z =x//y
print("Целая часть равна ", z)
z =x%y
print("Остаток равен ", z)

Будучи применённой к целым числам операция деления / (косая черта) возвращает действительное число типа float, даже если деление осуществилось нацело. Также функция возведения в степень возвращает значение типа float, если показатель степени — отрицательное число. При выводе на экран чисел типа float Python будет показывать дробную часть – несколько цифр после десятичной точки. Если дробная часть равна 0, то после десятичной точки будет выведен 0.
Действительные (вещественные) числа записываются в Python с десятичной точкой, а не с запятой, как принято при записи десятичных дробей в нашей стране. Для записи очень больших или очень маленьких по модулю чисел используется запись с плавающей точкой. В этом случае число представляется в виде произведения некоторой десятичной дроби, называемой мантиссой, и степени числа 10, причём показатель степени является целым (возможно отрицательным) числом. Числа с плавающей точкой в программах на языке Python записываются по следующему правилу: сначала записывается мантисса, затем идёт буква e, затем записывается целое число, являющееся показателем степени числа 10. Пробелы внутри такой записи не допускаются. Например, расстояние от земли до солнца будет записываться как 1.496e11, а масса молекулы воды 2.99e-23.
Если в программу необходимо ввести с клавиатуры действительное число, то для преобразования типа следует использовать функцию float().
Пример 5. Программа вычисляет среднее арифметическое двух действительных чисел.

print("Введите два действительных числа")
x =float(input())
y =float(input())
z =(x +y)/2
print("Среднее арифметическое равно ", z)

Если в качестве аргумента функции int() указать действительное число с дробной частью, то она вернёт целое число отбросив дробную часть, т.е. произведёт округление в сторону нуля. В Python существует ещё несколько полезных базовых функций для работы с целыми и действительными числами:
· abs(x) - возвращает абсолютное значение (модуль) числа x;
· round(x, n) - Округляет число x до n знаков после десятичной точки. Если второй аргумент n опущен, то округление производится до ближайшего целого числа, при этом, если дробная часть числа x равна 0.5, то число округляется до ближайшего чётного числа;
· bin(n) – Преобразует целое число n в строку, содержащую его двоичную запись;
· oct(n) – Преобразует целое число n в строку, содержащую его восьмеричную запись;
· hex(n) – Преобразует целое число n в строку, содержащую его шестнадцатеричную запись;
· len(s) - Возвращает число элементов в объекте s;
· ord(с) – возвращает код символа s;
· chr(n) - возвращает односимвольную строку, код символа которой равен n.
Пример 6. Программа преобразует введённое целое число в двоичное, восьмеричное и шестнадцатеричное.

print("Введите целое число")
n =int(input())
s1 =bin(n)
s2 =oct(n)
s3 =hex(n)
print("Двоичная запись: ", s1)
print("Восьмеричная запись: ", s2)
print("Шестнадцатеричная запись: ", s3)

7.4.3. Библиотеки Python
Для проведения более сложных вычислений в Python существует много дополнительных функций, собранных в библиотеку (модуль) math. Для использования библиотечных функций в начале программы необходимо подключить соответствующий модуль инструкцией import. Существует несколько способов использования этой инструкции. Рассмотрим их на примере.
Пример 7. Программа извлекает квадратный корень из введённого числа и округляет его различными способами.

import math
print("Введите число")
x =float(input())
y =math.sqrt(x)
z1 =round(y, 2)
z2 =math.ceil(y)
z3 =math.floor(y)
print("Корень без округления: ", y)
print("Обычное округление: ", z1)
print("Округление вверх: ", z2)
print("Округление вниз: ", z3)

Функции sqrt(), ceil() и floor() содержатся в модуле math, а функция round() является базовой, поэтому перед именем функции round() имя модуля не пишется, а перед остальными тремя следует писать имя модуля math, отделяя его от имени функции точкой.
Если же подключить модуль другим способом, то и перед библиотечными функциями писать имя модуля math будет не нужно. Для этого следует использовать инструкцию подключения модуля следующим образом:

from math import *

Обратите внимание, что в конце инструкции подключения модуля math пишется символ * (звезда). При подключении библиотеки этим способом при вызове функции указывать перед её именем имя модуля ненужно.

7.5. Программирование алгоритмов с ветвлением на языке Python

7.5.1. Инструкция ветвления
рассмотренные ранее примеры программ на языке Python имели линейную структуру, т.е. все инструкции этих программ выполнялись последовательно одна за другой, в соответствии с последовательностью записи. Каждая записанная в тексте программы инструкция обязательно выполнялась в свою очередь. Теперь будет рассмотрена программная реализация алгоритмической структуры ветвления на языке Python.
Пусть, например, необходимо по данному числу x определить его абсолютную величину (модуль). Программа должна вывести на экран значение переменной x, если x>0 или вывести -x в противном случае. Встроенную функцию abs() использовать запрещается. Линейная структура программы нарушается, поскольку в зависимости от справедливости условия x>0 должна быть выведена либо одна, либо другая величина.
Пример 1. Программа вывода модуля числа.

Print(“Вычисление модуля числа”)
x = int(input())
if x > 0:
 print(x)
else:
 print(-x)

В этой программе используется условная инструкция if (если). После слова if указывается проверяемое логическое условие (x > 0), завершающееся двоеточием. После этого идёт блок (последовательность) инструкций, который будет выполнен, если условие истинно, в данном примере это вывод на экран величины x. Затем идёт ключевое слово else (иначе), также завершающееся двоеточием, и блок инструкций, который будет выполнен, если проверяемое условие неверно, в данном случае будет выведено значение -x.
Оператор проверки условия реализует алгоритмическую конструкцию «ветвление» и изменяет порядок выполнения инструкций программы в зависимости от истинности или ложности некоторого условия.
Синтаксическая схема условного оператора языка Python выглядит так:

if «условие»:
 Блок инструкций 1
else:
 Блок инструкций 2

Здесь «условие» представляет собой некоторое логическое выражение, которое может принять либо истинное либо ложное значение. Истинность условия проверяется интерпретатором языка. Если условие истинно, то выполняется блок инструкций 1, а блок инструкций 2 пропускается; если же условие ложно, то выполняется блок инструкций 2, а блок инструкций 1 пропускается.
Несколько инструкций в единый блок объединяются с помощью одинаковых отступов от начала строки. Обычно отступ создаётся четырьмя пробелами. Например, чтобы в случае истинности условия выполнилось три различных инструкции, запись этих инструкций следует начинать с четырёх пробелов каждую. В случае, если в какой-либо строке блока объединённых инструкций будет лишний пробел или наоборот их будет меньше необходимого, то при запуске программы интерпретатор выдаст ошибку. Рекомендуется использовать отступ в 4 пробела или символ табуляции. Это одно из существенных отличий синтаксиса языка Python от синтаксиса большинства языков, в которых блоки выделяются специальными словами, например, нц кц в школьном алгоритмическом языке, begin end в Pascal или фигурными скобками в языке C.
Обратите внимание, что даже если блок инструкций состоит всего из одной инструкции, запись этой инструкции должна начинаться с четырёх пробелов.
Заметим, что для контроля количества пробелов удобно использовать брайлевский дисплей, на нём сразу видно с какой позиции начинается запись инструкции.
Приведём пример программы решения квадратного уравнения.
Пример 2. Программа решения квадратного уравнения.

print("Программа решения квадратного уравнения")
a =float(input("Введите первый коэффициент: "))
b =float(input("Введите второй коэффициент: "))
c =float(input("Введите третий коэффициент: "))
d =b*b -4*a*c
if d < 0:
 print("Действительных корней нет!")
else:
 x1 =(-b +d**0.5)/(2*a)
 x2 =(-b -d**0.5)/(2*a)
 print("Корни уравнения:", x1, "и", x2)

На этом примере продемонстрирована ещё одна возможность функции input() – это возможность вывода текстового сообщения. Внутри круглых скобок в кавычках можно указывать текст запроса вводимых данных. Это позволяет обойтись без вызова функции print() для вывода на экран необходимых пояснений для пользователя.

7.5.2. Простые и составные условия
В качестве условия после служебного слова if может применяться любое логическое выражение, результатом которого является либо истина, либо ложь. Это может быть выражение с операциями отношения, логическая переменная или сложное логическое условие, составленное из простых условий с помощью логических связок.
В качестве инструкций после двоеточия может применяться любая инструкция языка Python, в том числе и другой (вложенный) условный оператор if.
Как правило, проверяемым условием является логическое выражение с использованием одного из следующих операторов отношения (сравнения):
· < (Меньше) — условие истинно, если первый операнд меньше второго;
· (Больше) — условие истинно, если первый операнд больше второго;
· <= (меньше или равно) - условие истинно, если первый операнд не превосходит второго;
· >= (больше или равно) - условие истинно, если второй операнд не превосходит первого;
· == (равно) – Условие истинно, если два операнда равны;
· != (неравно) – условие истинно, если два операнда неравны.
Например, условие x*x < 1000 означает, что значение переменной x умноженное само на себя меньше числа 1000.
В языке Python Операторы сравнения можно объединять в цепочки, например, a ==b ==c или 1 <=x <=10.
Операторы отношения предназначены для сравнения двух величин. Результат сравнения имеет логический (bool) тип. Значения логического типа может быть одним из двух:
· True – истина;
· False - ложь.
 Если преобразовать логическое True к типу int, то получится 1, а преобразование False даст 0. При обратном преобразовании число 0 преобразуется в False, а любое ненулевое число в True.
Обратите внимание, что True и False пишутся с большой буквы. Если забыть про это и написать с малой буквы, то интерпретатор выдаст ошибку и программа не заработает.
Иногда нужно проверить одновременно не одно, а несколько условий. Например, проверить, является ли данное число чётным можно используя условие n%2 ==0 (остаток от деления n на 2 равен 0), а если необходимо проверить, что два данных целых числа n и m являются чётными, необходимо проверить справедливость одновременно двух условий: n%2 ==0 и m%2 ==0, для чего их необходимо объединить логической связкой and (логическое И):
n%2 ==0 and m%2 ==0
В языке Python существуют стандартные логические операторы:
· And - логическое «И»;
· or - логическое «ИЛИ»;
· not - логическое отрицание «НЕ».
Логическая связка and является бинарным оператором, т.е. оператором с двумя операндами, и имеет вид x and y, где x и y – логические выражения. Оператор and возвращает True тогда и только тогда, когда оба его операнда имеют значение True. Во всех остальных случаях он возвращает False.
Логическая связка or также является бинарным оператором и возвращает True тогда и только тогда, когда хотя бы один операнд равен True. В остальных случаях возвращается False.
Логическое отрицание not является унарным (с одним операндом) оператором и имеет вид not x. Оператор not возвращает True, если операнд равен False, а если операнд равен True, то возвращается False.
Пример 3. Программа проверяет, являются ли оба введённых числа чётными.

print("Проверка чётности чисел")
x =int(input("Введите первое число: "))
y =int(input("Введите второе число: "))
if x%2 ==0 and y%2 ==0:
 print("Оба числа чётные!")
else:
 print("среди введённых чисел есть нечётное!")

Подумайте, как можно записать условие в этой программе без использования логических связок.

7.5.3. Краткая форма инструкции ветвления
В инструкции ветвления может отсутствовать слово else: и последующий блок. Такая инструкция называется неполным ветвлением или краткой формой инструкции ветвления. Например, если как в примере 1 необходимо вычислить абсолютную величину (модуль) x, то это можно сделать и следующим образом.
Пример 4. Программа вычисляет модуль числа, используя краткую форму инструкции ветвления и не используя встроенную функцию abs().

Print(“Вычисление модуля числа”)
X =int(input(“Введите число: ”))
if x < 0:
 x =-x
print(x)

В этом примере переменной x будет присвоено значение -x, но только в том случае, когда x<0. А инструкция print(x) будет выполнена всегда, независимо от проверяемого условия, поскольку написана без отступа.

7.6. Цикл с параметром на языке Python

Циклическая конструкция состоит из управляющей структуры и многократно повторяющегося набора инструкций, называемого телом цикла. В языке Python Циклические алгоритмические конструкции бывают двух типов:
1. циклы с параметром (или со счётчиком), в которых тело цикла выполняется заранее заданное количество раз;
2. циклы с условием, в которых тело цикла выполняется, пока это условие истинно.
Цикл с условием рассматривается в следующем пункте, а в этом пункте будет описано использование цикла с параметром.
В языке Python цикл с параметром обеспечен необходимыми возможностями для быстрого и эффективного программирования циклических алгоритмов. Для задания этой алгоритмической конструкции используется ключевое слово for. Это же ключевое слово используется и в большинстве других языков программирования, поэтому цикл с параметром часто называют «цикл for» (для).
В первой (управляющей) строке цикла после ключевого слова for указывается имя переменной и последовательность или диапазон значений, которые эта переменная будет принимать. Заканчивается эта строка двоеточием.
Непосредственно после управляющей строки цикла с одинаковым отступом от начала строки записываются инструкции тела цикла. Инструкции, образующие тело цикла, объединяются в блок созданием одинакового отступа в начале каждой из объединяемых строк. Так же, как и в условной инструкции if, договоримся делать отступ из четырёх пробелов или одного табулятора.
Цикл с параметром обладает возможностью «перебирать» значения некоторой последовательности. Рассмотрим эту возможность на примерах.
Пример 1. Программа выводит на экран символы некоторой строки по одному.

s ='Привет!'
for ch in s:
 print(ch)

На первом шаге цикла переменная ch содержит первую букву строки «Привет!», т.е. букву «П». Именно эта буква и будет выведена на экран инструкцией print() тела цикла. На втором шаге в переменной ch будет вторая буква «р» и в теле цикла она выводится на экран. Так перебор строки (последовательности) продолжается семь шагов, т.е. цикл срабатывает семь раз. На последнем шаге в переменную ch помещается символ «!» (восклицательный знак). После вывода его на экран цикл завершается и, если в программе есть ещё инструкции после цикла, выполняются они. В примере 1 после окончания цикла других инструкций нет и программа завершается.
При выполнении программы примера 1, буквы слова «Привет!» выводятся с новой строки каждая, поскольку инструкция print() вызывается для каждой из них заново.
Обратите внимание, что в этом примере строка символов заключена в апострофы (одинарные кавычки). В языке Python нет разницы между использованием кавычек или апострофов для заключения строк текста, допустим и тот, и другой вариант. Заметим, также, что в языке Python нет специального типа для хранения единственного символа и одиночные символы хранятся как строки длинны 1.
Пример 2. Программа последовательно выводит на экран названия цветов радуги.

colors ='Красный', 'Оранжевый', 'Жёлтый', 'Зелёный', 'Голубой', 'Синий', 'Фиолетовый'
for ch in colors:
 print(ch)

В этом примере переменная ch будет содержать на каждом шаге цикла название одного из цветов радуги. Например, на третьем шаге в ней будет находится слово «Жёлтый». После того, как параметр цикла (переменная ch) примет последовательно все семь значений, цикл завершит свою работу.
Цикл for используется для перебора и обработки элементов строки или другой последовательности, а также для выполнения группы инструкций (тела цикла) заданное число раз. Параметр цикла может принимать значения из некоторого диапазона целых чисел. При таком использовании параметр цикла изменяется от наименьшего до наибольшего значения с определённым шагом.
Для повторения цикла определённое количество раз следует использовать в его управляющей строке функцию range().
Пример 3. Программа выводит на экран таблицу квадратов целых чисел от 0 до 9.

for i in range(10):
 print('Квадрат числа', i, 'равен', i*i)

В теле цикла внутри скобок функции print() расположены четыре аргумента, разделённые запятой. Сперва идёт строка ‘Квадрат числа’, затем переменная i, затем строка ‘равен’ и, наконец, арифметическое выражение i*I (I умножить на i). Благодаря использованию функции range() в этом примере переменная i принимает последовательно значения от 0 до 9, т.е. на первом шаге цикла I =0, на втором шаге I =1 и т.д. А на последнем шаге I =9.
Обратите внимание, что указанное в качестве аргумента функции range() число 10 не попадает в переменную i. Данная конструкция работает так, что параметр цикла I принимает целые неотрицательные значения, меньшие числа 10. Если в качестве аргумента указан 0 или отрицательное число, то тело цикла не выполнится ни разу.
Функция range() может также принимать два аргумента. Вызов range(a, b) означает, что параметр цикла будет принимать значения от a до b -1, т.е. первый аргумент функции range(a, b) задаёт начальное значение параметра цикла, а второй аргумент задаёт первое по порядку целое значение, которое параметр цикла принимать не будет. Если a >=b, то цикл не будет выполнен ни разу.
Пример 4. Программа запрашивает натуральное число и выводит на экран сумму всех натуральных чисел от 1 до введённого значения.

n =int(input('Введите натуральное число '))
sum =0
for i in range(1, n +1):
 sum =sum +i
print('Сумма равна', sum)

Обратите внимание на следующие особенности работы данного примера:
1. переменная i принимает значения от 1 до n, поскольку второй аргумент функции range() равен n +1.
2. В начале программы в переменную sum положено значение 0. Эта процедура называется инициализация переменной. Программист должен следить за тем, чтобы перед первым использованием каждой переменной было присвоено какое-либо значение. Переменная n здесь инициализируется при первом использовании.
3. При выводе приглашения «Введите натуральное число» перед закрывающем апострофом имеется пробел. Если его не написать, то при работе программы на экране введённое пользователем число не будет отделено от приглашения пробелом (проверьте это с помощью брайлевского дисплея).
4. Инструкцию тела цикла sum =sum +i можно записать в краткой форме sum +=i. При такой записи к значению переменной sum на каждом шаге цикла также будет добавляться значение переменной i.
5. Инструкция print('Сумма равна', sum) записана без отступа (без пробелов в начале строки), поэтому она выполняется один раз после окончания работы цикла.
Чтобы организовать цикл, в котором параметр будет увеличиваться с каким-либо другим шагом или уменьшаться, необходимо использовать функцию range() с тремя аргументами. Первый аргумент задаёт начальное значение параметра цикла, второй аргумент задаёт значение, до которого будет изменяться параметр цикла (не включая его), а третий аргумент — величину изменения параметра. Например, сделать цикл по всем нечётным числам от 1 до 99 можно при помощи функции range(1, 100, 2), а сделать цикл по всем числам от 100 до 1 можно при помощи range(100, 0, -1).
Более формально, цикл
for i in range(a, b, d):
при d > 0 задаёт значения параметра цикла i =a, i =a +d, i =a +2*d и так для всех значений, для которых i < b. Если же d < 0, то параметр цикла принимает все значения i > b.
Пример 5. Программа запрашивает натуральное число от 1 до 99 и выводит на экран сумму всех натуральных чисел, кратных введённому значению.

d =int(input('Введите натуральное число от 1 до 99 '))
sum =0
for i in range(d, 100, d):
 sum +=i
print('Сумма равна', sum)

Пример 6. Программа вычисляет факториал натурального числа и выводит результат на экран. Напомним, что факториалом называется произведение всех натуральных чисел от 1 до данного. Например, факториал числа 3 равен 1*2*3 =6.

n =int(input('Введите натуральное число '))
f =1
for i in range(2, n +1):
 f *=i
print('Факториал числа', n, 'равен', f)

Пример 7. Программа запрашивает натуральное число и выводит сообщение «Число простое», если введённое число было простым, и выводит сообщение «Число составное» в противном случае.

n =int(input('Введите натуральное число '))
p =False
for i in range(2, n):
 if n%i ==0:
 p =True
if p:
 print('Число составное')
else:
 print('Число простое')

Напомним, что логические значения «True» и «False» пишутся с большой буквы. Язык программирования Python различает большие и малые буквы при написании текста программы.

7.7. Цикл с проверкой условия на языке Python

Второй вариант реализации циклической конструкции – это циклы с условием, в которых тело цикла выполняется, пока это условие истинно. В языке программирования Python (как и во многих других языках) этот цикл начинается с ключевого слова while.
Цикл while (пока) позволяет выполнять определённый блок инструкций (тело цикла), пока проверяемое условие истинно. Условие записывается в управляющей строке после ключевого слова while и проверяется до выполнения тела цикла. Как правило, цикл while используется, когда невозможно определить точное количество проходов цикла.
Цикл while в языке Python представляет собой более универсальный инструмент выполнения циклически повторяющихся инструкций и не имеет прямой связи с последовательностями. Рассмотрим его работу на примерах.
Пример 1. Программа спрашивает у пользователя: «Сколько дней в апреле?» и проверяет ответ. Если ответ не правильный программа сообщает об этом и снова задаёт тот же вопрос. Если ответ правильный программа выводит соответствующее сообщение и завершается.

answer =int(input('Сколько дней в апреле? '))
while answer !=30:
 print('Это неправильный ответ!')
 answer =int(input('Сколько дней в апреле? '))
print('Правильно!')

Пример 2. Программа выводит на экран треугольник из символов «*» (звезда). В первой строке выводится 5 звёздочек, во второй – 4 и т.д. В последней пятой строке выводится одна звёздочка.

n =5
 while n > 0:
 print('*'*n)
 n -=1

Синтаксис цикла while в простейшем случае выглядит так:
while условие:
 Тело цикла (блок инструкций с отступом)
При выполнении цикла while сначала проверяется условие. Если оно ложно, то выполнение цикла прекращается и управление передаётся на следующую инструкцию после тела цикла. Если условие истинно, то выполняется тело цикла, после чего условие проверяется снова и опять выполняется тело цикла. Так продолжается до тех пор, пока условие истинно. Как только условие станет ложно, работа цикла завершится и управление перейдёт к инструкции, следующей за циклом.
Пример 3. Программа выводит на экран квадраты натуральных чисел от 1 до 10 (видно, что цикл while заменяет цикл for).

i =1
while i <=10:
 print(‘Квадрат числа’, i, ’равен’, i**2)
 i +=1

В этом примере переменная i внутри цикла изменяется от 1 до 10. Заметим, что после выполнения этого цикла значение переменной i будет равно 11, поскольку именно при i равно 11 условие i <=10 впервые перестанет выполняться.
Пример 4. Программа определяет количество цифр введённого натурального числа n.

n =int(input('Введите число '))
length =0
while n > 0:
 n//=10
 length +=1
print('Во введённом числе', length, 'цифр')

В этом примере программа отбрасывает по одной цифре введённого числа, начиная с младшего разряда, что эквивалентно целочисленному делению на 10 (n //= 10), при этом переменная length увеличивается на единицу при каждом проходе цикла.
В языке Python есть и другой способ решения этой задачи, использующий специальную функцию:

length =len(str(n))

Приведём два более сложных примера использования цикла while.
Пример 5. Программа запрашивает натуральное десятичное число и преобразует его в двоичную запись.

x =int(input('Введите натуральное число '))
answer ='B'
while x > 0:
 answer =str(x%2) +answer
 x //=2
print('Двоичная запись введённого числа', answer)

Обратите внимание на следующие особенности работы данного примера:
1. В теле цикла формируется строка, содержащая результат в виде символов, а не цифр. На экран она выводится после окончания работы цикла.
2. Перед циклом этой строке присваивается символ «B», символизирующий, что в ней содержится именно двоичная запись числа. При выводе на экран символ «B» окажется в конце строки с нулями и единицами. Синтаксически этот символ не обязателен.
3. При формировании строки с результатом в теле цикла в неё сперва помещается вычисленная цифра, а затем добавляется предыдущее содержимое. Так сделано потому, что используемый алгоритм перевода десятичного числа в двоичное вычисляет двоичные цифры с конца.
Напомним, что результат сложения строк (конкатенация) зависит от порядка следования слагаемых.
Пример 6. Программа запрашивает натуральное число и выводит на экран его разложение на простые множители.

n =int(input('Введите натуральное число '))
k =2
answer =str(n) +' ='
while n > 1:
 if n%k ==0:
 answer =answer +str(k) +'*'
 n =n//k
 else:
 k +=1
print(answer[:-1])

В этом примере вывод строки с результатом осуществляется с помощью среза. Такой срез отсекает последний символ в строке, поскольку, в данном примере этот символ является звёздочкой, а в конце она не нужна. Изучить срезы вы можете самостоятельно, опираясь на материалы из Интернет.

